Insecticidal Activity Aegle marmelos (L.) Correa Essential Oil Against Four Stored Grain Insect Pests

Rajesh Kumar¹, Ashok Kumar¹, Chandra Shekhar Prasa1¹, Nawal Kishore Dubey¹* and Raju Samant²

¹ Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
² Department of Entomology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India

Abstract: Experiments were carried out to determine the potential of using essential oil from leaves of Aegle marmelos to control insect infestation of stored gram from Callosobruchus chinensis (L.) (Bruchidae) and wheat from Rhyzopertha dominica (F.) (Bostrychidae), Sitophilus oryzae (L.) (Curculionidae) and Tribolium castaneum (Herbst) (Tenebrionidae). After introducing the test insects, stored gram and wheat samples were fumigated with essential oil of Aegle marmelos at 500 µg/mL (ppm). The oil significantly enhanced feeding deterrence in insects and reduced the grain damage as well as weight loss in fumigated gram and wheat samples infested with all insects except T. castaneum. The essential oil at different doses significantly reduced oviposition and adult emergence of C. chinensis in treated cowpea seeds. The oil protected stored gram from C. chinensis and wheat from R. dominica and S. oryzae for two years. Limonene (88 %) was found to be the major component in the oil through GC-MS analysis. Regression analysis of data on individuals in treated cowpea confirmed that significant reduction of oviposition and adult emergence of C. chinensis decreased with increase in doses. The findings emphasize the efficacy of A. marmelos oil as fumigant against insect infestations of stored grains and strengthen the possibility of using it as an alternative to synthetic chemicals for preserving stored grains.

Key words: Aegle marmelos, Callosobruchus chinensis, Rhyzopertha dominica, Sitophilus oryzae, Tribolium castaneum, oviposition

Introduction

Cereals and pulses have great biological and nutritional value in developing countries, are lost upto 20-60 per cent by storage insect pests during storage (Arthur and Throne 2003; Babu et al. 2003; Shaaya et al. 1997). Post harvest deterioration causes economic losses due to obvious decay and adverse changes in the odour, taste, appearance and nutrition value (Phillips and Burkholder 1984; Mondal and Port 1994; Arlian et al. 1996). In addition, the arthropods transfer bacteria and microscopic fungi of pathogen importance on stick on their bodies or disseminate them via faeces (Wilbur and Mills 1978, Hubert et al. 2004). During recent years considerable attention has been paid towards exploitation of plant materials in protection of food commodities from insect infestations. Extracts of some plant species viz. Lantana camara (Saxena et al. 1992), Illicium verum (Ho et al. 1995), Tithonia diversifolia (Adedire and Akinneye, 2004) have been reported to possess strong insecticidal activity against different storage insects. Plant derived products namely, azadirachtin from Azadirachta indica, pyrethrin from Chrysanthemum cinerariaefolium, carvone from Carum carvi and allyl isothiocynate from mustard and horseradish oil have been received global attention due to their pesticidal properties and potential to protect several food commodities (Hartmans et al. 1995; Ward 1998; Varma and Dubey 1999; Athanassiou et al. 2005). Essential oils produced by different plant genera have been reported to be biologically active and are endowed with insecticidal, antimicrobial and bio regulatory properties (Mishra and Dubey 1994; Varma and Dubey 1999; Dubey et al. 2004; Holley and Patel 2005). The volatility and biodegradability of flavour compounds of angiosperm will be advantageous if they are developed as pesticide insecticide (French 1985). There may be least chance of residual toxicity by treatment of food commodities with volatile substances of higher plant origin.

Aegle marmelos (L.) Correa (Rutaceae), commonly known as Bael, is a sacred tree for Hindu Religion, native to northern India, but is found widely throughout the

*Corresponding author. mailing address: Centre of Advanced Study in Botany, Faculty of Science, Banaras Hindu University, Varanasi- 221005, India. Phone: 91-542-2307146, 2307147, Fax: 91-542-268174, E- mail: ndubeybhu@gmail.com.
Indian peninsula and in Ceylon, Burma, Thailand and Indo-China (Bailey 1963). All parts of the tree namely, root, leaf, trunk, fruit and seed are used for treatment of many different diseases. The constituents of Aegle are used in heart diseases (Kakikuchi et al. 1991), inflammatory and wound healing (Udupa et al. 1994). Leaves of A. marmelos have been reported as hypoglycemic effect (Santhoshkumari and Devi 1990; Sharma et al. 1996). The essential oil from the leaves of A. marmelos is known to exhibited antifungal properties (Renu et al. 1986; Rana et al. 1997).

Keeping these facts in mind, in the present investigation, essential oil of A. marmelos was tested as an in vivo fumigant to protect stored gram from insect pest Callosobruchus chinensis (L.) (Bruchidae) and wheat and Rhyzopertha dominica (F.), Sitophilus oryzae (L.) and Tribolium castaneum (Herbst). The effect of Aegle oil applications on mortality, oviposition and adult development of C. chinensis has also been determined.

Materials and Methods

Rearing of test insects. Rearing of C. chinensis was maintained on cowpea seeds (Vigna unguiculata (L.) Walp.) (Babu et al. 2003; Jenkins et al. 2003). R. dominica, and S. oryzae were maintained on wheat grains (Triticum aestivum (L.) while T. castaneum on wheat flour at 27± 2°C and RH 80 ± 5% (Perez-Mendoza et al., 2004 ). Forty adult insects were released separately in 200 g of commodities (wheat/cowpea/wheat flour) in plastic containers covered by muslin cloth. After 24 hours, adult insects were removed and the commodities were incubated in a temperature/humidity controlled cabinet (27± 2°C and RH 80 ± 5%) in darkness to obtain same aged insects. Adult insects were 2-4 days old when used in the bioassays.

Extraction of essential oil. Essential oil was extracted from fresh leaves of A. marmelos (300 g) through hydrodistillation by Clevenger’s apparatus for 4 h. The extracted oil (yield 0.3 % v/w) was dried over anhydrous sodium sulphate and the essential oil was stored in clean glass vials.

Chemical characterization. The essential oil of A. marmelos leaves was subjected to GC-MS analysis. GC-MS analysis was performed on Perkin Elmer Turbomass/Auto XL Instrument (Perkin Elmer, Inc. USA) at 70 eV with EQUITY-5 capillary column (60m X 0.32 mm X 0.25 μm). Helium was used as carrier gas @ 10 psi column head pressure. Injector and detector temperature were at 220 °C and 280°C, respectively. Split ratio was 1:50. The oven temperature was programmed from 100 to 280°C @ 3 °C/min with initial and final holdup time 2 min. The compounds were identified by comparing their retention times, mass spectra with authentic standards and the fragmentation patterns of the MS with NIST and Wiley GC-MS computer library of essential oils.

Fumigation of wheat and gram samples by the essential oil of A. marmelos. The essential oil of A. marmelos was used to fumigate the wheat and gram samples separately by the method adapted by Shaaya et al. (1997) and Kumar et al. (2007). Five hundred g of wheat samples (var. Malviya 234, 10.93 % moisture) were kept separately in closed plastic containers (35 cm diameter x 16 cm). Care was taken to use uninfested freshly harvested wheat grains. Twenty five individuals of each insect species, i.e. R. dominica, S. oryzae and T. castaneum of mixed sex were introduced in the containers. Requisite amount of the oil of A. marmelos was introduced separately in the plastic containers by soaking in cotton swab so as to procure concentration of 500 ppm. The containers were made airtight. The freshly harvested uninfested gram samples (var. PUSA 362, 10.75 % moisture) were also similarly provided with 25 individuals of C. chinensis and fumigated with the oil of A. marmelos at 500 ppm. The wheat and gram inoculated with the test insects without oil treatment served as controls. After 24 months of storage at laboratory conditions in a temperature/humidity control cabinet (27 ± 2°C and RH 80 ± 5%) in darkness. The efficacy of A. marmelos oil on insect infestation was determined by calculating grain damage (%), weight loss (%) and feeding deterrence (%) of treated and control sets. The grain damage was determined by counting feeding injuries and emergence holes on the surface of the grains. The weight loss (%) of wheat and gram samples in the treated and control sets was calculated by fresh weight basis using the formula suggested by Parkin (1956).

Weight loss (%) = \( \frac{WI - W}{WI} \times 100 \)

where WI and W represents the weight of grains before and after the experiment, respectively

Feeding deterrence was calculated using the feeding deterrent index following Isman (1990):

Feeding deterrent index (FDI) [%] = \( \frac{C - T}{C + T} \times 100 \)

where C and T is the weight loss in the controls and in the fumigated sets, respectively.

Effect of essential oil on mortality, oviposition and adult development of bruchids on cow pea. The essential oil of A. marmelos was tested for its in vivo effects on insect mortality, oviposition and adult emergence on C. chinensis following Bright et al. (2001) and Kumar et al. (2007). A stock solution of the essential oil was prepared by dissolving 100 μl of Aegle oil in 1.9 ml of acetone. Twenty five seeds of cow pea (Vigna unguiculata (L.) Walp.) were filled in glass vials (6.3 X 2 cm diameter) and treated separately with different dose i.e. 100, 10, 1.0 and 0.1 μl of the oil. The seeds were then dressed by continuous shaking for five minutes for proper mixing of the oils on the seeds. For control sets the seeds were dressed in requisite amount of acetone in place of the oil. The treated samples were kept in temperature-humidity control cabinet (27±2 °C and
RH 80± 5%). After 24 hours five bruchids of mixed sex were introduced in each vial separately.

Requisite control sets were kept for each treatment set. After 24 hours the mortality of insects was observed in each vial and all insects (live and dead) were removed. The number of eggs laid on seeds of treated and control seeds were counted after three days of starting the experiment. The number of adult insects emerged in cow pea samples in each treated and control set was counted after 30, 45 and 90 days of storage.

Statistical analysis. All the experiments were repeated thrice and data was reported as mean value ± SE. The statistical analysis was performed by one way analysis of variance and means were compared by least significance difference test (P< 0.05) using the SPSS statistical software package (SPSS, ver. 10.0; Chicago, IL, USA). Further, the data was subjected to Student’s ‘t’ test to analyzed the effect of Aegle oil on grain damage as well as weight loss of wheat and gram with control. The correlation coefficient was calculated between dose-mortality, dose-oviposition, dose-adult emergence, mortality-oviposition and oviposition-adult emergence using software Origin (Origin 6.0 Northampton, MA, USA).

Results

The GC-MS analysis of the A. marmelos oil depicted the presence of following compounds viz. α pinene (0.28 %), sabinene (0.14 %), limonene (88.57 %), ocimene (2.29 %) and p caryophyllene (0.06 %). Limonene was found to be major component in Aegle oil. As it evident from Table 1 that oil significantly protected stored gram from C. chinensis and wheat samples from R. dominica and S. oryzae for the first two years (P<0.05; LSD). The feeding deterrent index of the oil for C. chinensis, R. dominica and S. oryzae was 91.51, 97.26 and 98.02 % respectively while it was -6.18 % against T. castaneum. There was 100 % grain damage in T. castaneum while 7.0, 3.67 and 1.67 % grain damage was found in C. chinensis, R. dominica and S. oryzae infested grains respectively. However, significant reduction in weight loss was found in fumigated gram and wheat against the test insects except T. castaneum.

The effect of Aegle oil on mortality, oviposition and adult development of C. chinensis in treated cowpea samples is presented in Table 2. C. chinensis showed 71.41 % mortality at 100 µl dose of oil. Oviposition deterrent activity of the oil for C. chinensis enhanced with dose. The oviposition was reduced to 56.25 % at 100 µl oil dose. The reduction of hatching was also directly proportional to oil dose. Aegle oil checked more than 70 % of adult emergence of C. chinensis at different doses.

There was positive relationship between dose of the oil and adult mortality of C. chinensis (R= 0.898; P< 0.001) i.e. mortality of bruchids increased with increasing dose of Aegle oil (Fig. 1a). The negative relationship was found between dose x oviposition (R=0.958; <0.0001) and dose x adult emergence (R= -0.6419; P <0.05) of C. chinensis, indicating enhancement of insect mortality and reduction in oviposition and adult emergence with increasing dose of Aegle oil (Fig. 1 b, c). Linear regression analysis showed the significant relationship between mortality and oviposition; and the number of eggs laid on cowpea and the corresponding number of emerging insects. Oviposition was directly proportional to adult emergence of bruchids while it was inversely proportional to mortality of the insects (Fig. 1 d, e).

Discussion

In the present study the essential oil of A. marmelos exhibited as botanical fumigant in protection of stored gram and wheat by enhancing feeding deterrence and reducing grain damage as well as weight loss of C. chinensis, R. dominica and S. oryzae. The findings are in accordance with Kumar et al. (2007) and Varma and Dubey (2001) who investigated that essential oil of Cymbopogon martini, Caesulia axillaris and Mentha arvensis protected stored gram and wheat from C. chinensis, S. oryzae and T. castaneum for first 12 months of storage. In the present investigation the shelf life of the Aegle oil in protection of insect infestation was 24 months thus more than the oils reported earlier. Plant extracts and essential oils are known to possess repellent, ovicidal and insecticidal activities against various stored grain insects (Hill and Schoonhoven 1981; Desmarchelier 1994). The adult mortality might be attributed to the contact toxicity or to the abrasive effect on the pest cuticle (Mathur et al. 1985), which might also interfere with the respiratory mechanism of insect (Schoonhoven 1978; Agarwal et al. 1988; Kim et al. 2003). Results of present and earlier studies indicate that essential oil might be useful for managing coleopterous insects in enclosed spaces such as storage bins, glasshouse and buildings etc. because of their fumigant action. In addition, the interesting finding of the present study was the dissimilar performance of the A. marmelos oil against the test insects as well as food commodities. The same dose level of A. marmelos oil did not provide same level of protection against different commodities. The structure of the grains, texture, dust deposition and degree of adherence to the kernel affect the efficacy of insecticidal products (Subramanyam and Roseli 2000, Korunic 1997; Vayias and Athanassiou 2004). Thus, the dose should be prescribed according to the target species and the commodities.

In the present study the mortality, oviposition and adult emergence of C. chinensis were found vary significantly with different doses of Aegle oil.
Callosobruchus females generally prefer smooth seed varieties for oviposition (Haines 1991). Therefore, the cow pea was selected for oviposition and adult
Table1. Fumigant efficacy of A. marmelos oil on stored gram and wheat infested with four insect pests at 500 ppm

<table>
<thead>
<tr>
<th>Essential oil</th>
<th>Gram C. chinensis</th>
<th>R. dominica</th>
<th>Wheat S. oryzae</th>
<th>T. castaneum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. marmelos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain Damage (%)</td>
<td>Weight loss (%)</td>
<td>FDI Index (%)</td>
<td>Grain Damage (%)</td>
</tr>
<tr>
<td></td>
<td>7.00&lt;sup&gt;a&lt;/sup&gt; ± 0.30</td>
<td>2.64&lt;sup&gt;a&lt;/sup&gt; ± 0.21</td>
<td>91.51 ± 0.69</td>
<td>3.67&lt;sup&gt;a&lt;/sup&gt; ± 0.33</td>
</tr>
<tr>
<td>Control</td>
<td>100.00&lt;sup&gt;b&lt;/sup&gt; ± 0.00</td>
<td>59.50&lt;sup&gt;b&lt;/sup&gt; ± 0.29</td>
<td>100.00&lt;sup&gt;b&lt;/sup&gt; ± 0.00</td>
<td>100.00&lt;sup&gt;b&lt;/sup&gt; ± 0.00</td>
</tr>
</tbody>
</table>

±: Standard error
Means within each column followed by the different letter are significantly different (P<0.05, Student’s t test)
Table 2. Effect of *A. marmelos* oil on adult mortality, oviposition and adult emergence in *C. chinensis* on treated cow pea

<table>
<thead>
<tr>
<th>Dose of essential oil (µl)</th>
<th>Per cent adult mortality</th>
<th>Per cent reduction in egg number</th>
<th>Per cent reduction in adult emergence (Days after treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 DAT</td>
</tr>
<tr>
<td>100</td>
<td>71.41 ± 7.10&lt;sup&gt;a&lt;/sup&gt;</td>
<td>56.25 ± 2.08&lt;sup&gt;a&lt;/sup&gt;</td>
<td>72.42 ± 0.15&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>10</td>
<td>49.99 ± 7.10&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>47.92 ± 2.40&lt;sup&gt;a&lt;/sup&gt;</td>
<td>70.90 ± 1.82&lt;sup&gt;ab&lt;/sup&gt;</td>
</tr>
<tr>
<td>1.0</td>
<td>42.85 ± 7.10&lt;sup&gt;b&lt;/sup&gt;</td>
<td>34.03 ± 1.40&lt;sup&gt;b&lt;/sup&gt;</td>
<td>69.09 ± 3.35&lt;sup&gt;ab&lt;/sup&gt;</td>
</tr>
<tr>
<td>0.1</td>
<td>14.28 ± 0.00&lt;sup&gt;c&lt;/sup&gt;</td>
<td>22.22 ± 3.02&lt;sup&gt;c&lt;/sup&gt;</td>
<td>65.45 ± 1.82&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

±: Standard error
DAT: Days after treatment
Means within each column followed by the different letter are significantly different (P<0.05, LSD).

![Graph showing the effect of dose of *Aegle* oil on adult mortality of *C. chinensis*.](image)

Y = -0.0067x + 17.86
R = 0.898; P < 0.0001

**FIGURE. 1a.** Effect of dose of *Aegle* oil on adult mortality of *C. chinensis*. 

44
FIGURE 1C. Effect of dose of Aegle oil on adult development of C. chinensis

FIGURE 1d. Relationship between adult mortality and oviposition of C. chinensis
emergence trails in place of gram. *C. chinensis* females laid significantly fewer eggs on cowpea treated with different doses of *Aegle* oil than control sets, indicating that oil deterred *C. chinensis* females from ovipositing. Furthermore fewer insects were hatched in treated cowpea than the control at 30, 45 and 90 DAT (days after treatment). Since *C. chinensis* females deposit their eggs on the seed surface (Haines 1991), neonate larvae have to penetrate through the outer skin of the cowpea to reach the endosperm where the biologically active compounds from the *Aegle* oil might have deterred them. The reduction in adult emergence could either be due to egg-mortality or larval mortality or even reduction in hatching of the eggs. Oviposition inhibitors have the advantage of attacking a pest at the start of its life cycle. The insect is deterred from laying its eggs on the foodstuff, thus preventing the pest population from increasing.

The insecticidal constituents of many essential oils are mainly monoterpenoids (Coats et al. 1991; Konstantopoulou et al. 1992; Regnault-Roger and Hamraoui 1995; Kim et al. 2003). Monoterpenoids have been reported to inhibit reproduction of stored insects at several steps of the cycle: inhibition in oviposition, oxicidal effects, a larvicidal effect on neonate larvae before the penetration of the seeds or a larvicidal effect on larvae settled within the seed, thus inhibiting the emergence of imagos. A strong inhibition of oviposition was produced by carvacrol, thymol and terpineol. α pinene strongly inhibited the larval penetration and less effective to oviposition inhibition against the storage insect pest, *Acanthoscelides obtectus* (Regnault-Roger and Hamraoui, 1995). In the present study limonene was the major component of the oil of *A. marmelos* and it may be responsible for fumigant toxicity, oviposition deterrent, inhibition of adult development, and feeding-deterrent activities of test insects. The mode of toxicity for monoterpenoids is believed to be via competitive inhibition of acetylcholinesterase (Ryan and Byrne 1988).

Compounds with feeding deterrents are generally toxic to insects or cause physiological disturbances of development or oviposition (Nawrot and Harmantha 1994). For example azadirachtin is well known antifeedant and also interferes with insect growth (Siddig 1980). *A. marmelos* oil was mixture of a number of components that would reduce the chances for the development of insect resistance, which could be due to the diffusion of the gene selection process (Begon et al. 1999; Davies 1992). Although animal toxicity with *A. marmelos* oil were not conducted in the present study, however, concerns for residue of essential oil pesticides on food grains should be mitigated by the growing body of evidence that many essential constituents acquired through the diet are
actually beneficial to human health (Huang et al. 1994).
In summary, *Aegle* oil may be used as botanical insecticide against different stored grain insect pests causing infestation in stored wheat and pulses. The *Aegle* oil enhanced feeding deterrence of *C. chinensis*, *R. dominica* and *S. oryzae*. Therefore, insects were incapable to infest grain and to cause gain damage. *A. marmelos* significantly reduced oviposition and adult emergence of *C. chinensis* in treated cowpea. Moreover, because of the use in traditional medicine in cure of different human diseases, the *Aegle* oil may be used as semiochemicals mediating phytopesticide to protect stored food commodities in developing countries, for which some farmers may not have easy access to chemical insecticides.

Acknowledgements

Authors are thankful to CSIR, New Delhi for financial assistance and head, Department of Botany, Banaras Hindu University for providing laboratory facilities.

References


