A Survey on the Presence of Aflatoxin M$_{1}$ in Urfa Cheese

Mustafa Ardic1,*, Mustafa Atasever2, Gulsah Adiguzel2, Meryem Atasever2, Yakup Karakaya2, Cemal Unsal3, Hisamettin Durmaz1

1Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
2Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
39th Army cops “A” Type Food Control Detachment Commander, Erzurum, Turkey

Abstract: The presence and concentration range of aflatoxin M$_{1}$ (AFM$_{1}$) were investigated by Enzyme Linked Immunosorbent Assay (ELISA) technique in 64 samples of Urfa cheese obtained from retail outlets in Sanliurfa, Turkey. AFM$_{1}$ at detectable level (50 ng/kg) was found in 6.25% in these samples. The concentration of AFM$_{1}$ in samples ranged from 51.10 to 99.60 ng/kg. None of the cheese samples exceed the legal limit of 250 ng/kg established by Turkish Food Codex. It is concluded that, despite the widespread occurrence of AFM$_{1}$ in different cheeses, contamination levels in Urfa cheese were not a serious human health hazard.

Key words: Aflatoxin M$_{1}$, Urfa cheese, ELISA

Introduction

Aflatoxins are a group of extremely toxic metabolites produced by some species of Aspergillus namely A. flavus, A. parasiticus and the rare A. nomius during the growth of these fungi on foods and feeds. A. flavus produces only B aflatoxins, while the other two species produce both B and G aflatoxins. The formation of aflatoxins depends on the foods on which the moulds grow and the conditions of heat and humidity during the growth, harvesting and storage of the crops (Sweeney and Dobson 1998; Creepy 2002). These toxins are a significant threat to both human and animal health because they are potent carcinogens, teratogens and mutagens. There is also economical lose due to food contamination. (Blesa et al. 2004). Among aflatoxins, aflatoxin B$_{1}$ (AFB$_{1}$) is the most commonly found in foods and feeds. It is highly toxic, in terms of both acute and chronic toxicity (Sweeney and Dobson 1998; Moss 2002; Cavaliere et al. 2006), and is so highly carcinogenic as to be classified by the International Agency for Research on Cancer (IARC) as a Group 1 human carcinogen (IARC 1993).

Aflatoxin M$_{1}$ (AFM$_{1}$) is the hydroxylated metabolite of AFB$_{1}$ forming in liver by means of cytochrome P450-associated enzymes (Cavaliere et al. 2006). It may be found in milk or dairy products obtained from livestock that have ingested contaminated feed with AFB$_{1}$. There is a linear relationship between the amount of AFM$_{1}$ in milk and AFB$_{1}$ in feed consumed by animals. It has been reported that 0.3-6.2% of AFB$_{1}$ depending upon the amount of feed ingested by animal is transformed to some AFM$_{1}$ by the hepatic microsomal mixed function oxidase system and excreted in milk (Creepy 2002; Tekinsen and Tekinsen 2005). Studies have clearly demonstrated that AFM$_{1}$ causes toxic and carcinogenic effects (Galvano et al. 1996; Cavaliere et al. 2006),
therefore this toxin, initially classified by IARC as a Group 2B human carcinogen (IARC 1993), has now been moved to Group 1 (IARC 2002).

Milk and dairy products are a major nutrient for humans especially children. However, at the same time these products may be contaminated with AFM1. The presence of AFM1 in milk and dairy products can be a potential threat to the health of consumers (Sarimehmetoglu et al. 2004). In order to reduce this risk, many countries have regulated the levels of AFB1 in feeds and have set or proposed maximum permissible levels of AFM1 in milk and dairy products. The European Commission has set a limit of 50 ng/kg for AFM1 in raw milk, heat-treated milk and milk for the manufacture of milk-based-products (Commission Regulation 2001). Turkish legal limits for AFM1 in milk and cheese are 50 ng/l and 250 ng/kg respectively (Turkish Food Codex 2002).

When cheese is made from AFM1 contaminated milk, the toxin can be carried over into cheese, whey and curd (Kaniou-Grigoriadou et al. 2005). The distribution of AFM1 in each component can be ascribed to different factors such as extraction technique, methodology, type and degree of milk contamination, differences in milk quality and the cheese manufacture process (Blanco et al. 1988).

In Turkey, about 40-50 different cheese varieties have been produced. Apart from being well-known cheese varieties such as tulum, kashar and Turkish white brine cheese (Hayaloglu et al. 2002), there are many traditional cheese varieties and their production is largely based in small-scale dairies and family farms. Urfa cheese is semihard, traditional cheese produced mainly in the south-east of Turkey from either raw ovine or bovine milks or appropriate mixtures of both. Production of Urfa cheese is carried out from March to June in this region. The main stages of the production of Urfa cheese are as follows. The milk is coagulated with rennet at 30-32 °C. The coagulum is cut into small cubes (approximately 1 cm³). After whey draining, curd is scalded in hot water and stretched until it becomes a close knit with elastic structure. Afterwards, it is shaped with hand in small cotton bag and kept in brine for about 3-4 months. The most typical form of this cheese is oval, conical or convex-conical shape due to handling of the curd in small cotton bag during stretching. It is generally consumed after ripening, but also consumed freshly (Ardic et al. 2007). It is gaining nationwide popularity and has even been exported to Middle Eastern and Central Asian countries. Annual production of Urfa cheese have been estimated to be approximately 35 000-40 000 tones (Ozer et al. 2002; 2003).

There is very limited information available about Urfa cheese in the literature and no study has so far been carried out to determine the AFM1 levels in this cheese. Therefore, this study was aimed to determine the presence and levels of AFM1 in Urfa cheese produced in Sanliurfa province, Turkey.

Materials and Methods

Samples. A total of 64 Urfa cheese samples consumed in Sanliurfa province of Turkey were evaluated for the presence of AFM1. The cheese samples taken from 200-500 g quantities were randomly collected from retail outlets between April 2006 and June 2006 and transported within an insulated container at about 4 °C for analysis.

Method. The AFM1 concentrations of the samples were determined by competitive ELISA method (Ridascreen AFM1 Art no: R1101) according to the procedure described by R-Biopharm GmbH (1999). This method is quick, reliable and cost effective for the estimation of AFM1 and has been included in the official collection of test procedures by the German Federal Board of Health. The test shows cross-reaction to AFB1 (12.4%) but this is not relevant when analyzing AFM1, considering that AFB1 usually is not to be found in milk or milk products. Most of the reagents used were contained in the Ridascreen AFM test kit; which included microtiter plate coated with capture antibodies, AFM1 standard solutions (1.3 ml each 0 ppt, 5 ppt, 10 ppt, 20 ppt, 40 ppt and 80 ppt), peroxidase conjugated AFM1, substrate (urea peroxidase), chromogen (tetramethylbenzidine) and stop solution contains 1 N sulphuric acid. Methanol, n-heptane and dichloromethane used were provided by Merck. Phosphate Buffer Solution (PBS) was prepared by mixing 0.55 g sodium dihydrogen phosphate hydrate with 2.85 g disodium hydrogen phosphate-2-hydrate and 9 g sodium chloride and filling up to 1000 ml with distilled water.

Samples preparation for analysis. Preparation of samples was conducted according to the instructions of the Ridascreen kit. A representative cheese sample was triturated coarsely and thoroughly mixed, without the addition of liquid. Two g of triturated cheese samples weighed into a centrifugal glass vial and 40 ml dichloromethane was added and extracted by stirring/shaking the vial for 15 min. The suspension was filtered and 10 ml of the extract was evaporated at 60 °C under a weak nitrogen stream. The oily residue was redissolved in 0.5 ml methanol, 0.5 ml PBS buffer and 1 ml heptane and was mixed thoroughly. After centrifugation for 15 min at 2700 g, the upper heptane-layer was completely removed. Aliquot of the lower methanolic-aqueous phase was carefully poured off using a Pasteur pipette. 100 µl of this aliquot brought up to a 10 % methanol content by addition of 400 µl Ridascreen buffer 1 and 100 µl was used per well in the test.
ELISA test procedure. A sufficient number of microtiter wells were inserted into the microwell holder for all standards and samples. 100 µl standard solutions and prepared samples were added in separate wells and incubated for 60 min at room temperature (20 ºC) in the dark. The liquid was removed from the wells and the microwell holder was tapped upside down vigorously (three times in a row) against absorbent paper to ensure complete removal of liquid from the wells. Then the wells were washed twice with 250 µl of distilled water. 100 µl of the diluted enzyme conjugate (peroxidase conjugated AFM₁) was added and incubated for 60 min at room temperature in the dark. The wells were again washed with 250 µl of distilled water as described above. In the next stage 50 µl of substrate (urea peroxidase) and 50 µl of chromogen (tetrathiomethylenzidine) were added to each well and mixed thoroughly and incubated for 30 min at room temperature in the dark. Then 100 µl of the stop reagent (1 N H₂SO₄) was added to each well and mixed and the absorbance was measured at 450 nm in ELISA reader (ELX-800, Bio-Tek Instruments, Winooski, VT, USA).

Evaluation. The samples were evaluated according to the Rida Soft Win computer program prepared by R-Biopharm. The lower detection limit is 50 ng/kg, the recovery rate 102% and the average coefficient of variation 11% for cheese.

Results

In this study, a total of 64 Urfa cheese samples were analysed for the presence of AFM₁. The presence and the distribution of AFM₁ concentration in various ranges in Urfa cheese samples are presented in Table 1.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Positive samples a</th>
<th>Mean±SD b</th>
<th>Range</th>
<th>Distribution n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>4 (6.25)</td>
<td>64.95±23.17</td>
<td>51.10-99.60</td>
<td>60 (93.75)</td>
</tr>
</tbody>
</table>

a (≥50 ng/kg)b Mean±SD of positive samples

The incidence of AFM₁ in Urfa cheese was quite low, since 93.75% of samples were below the detectable level of 50 ng/kg. AFM₁ was found in 4 (6.25%) of cheese samples above the detectable level. The levels of AFM₁ in Urfa cheese samples were in the range of 51.10-99.60 ng/kg (mean=64.95±23.17 ng/kg). None of the samples was over the Turkish legal limit (250 ng/kg for cheese) established by Turkish Food Codex.

Discussion

AFM₁ levels in milk and dairy products are important since many people use milk and dairy products in their diets frequently. For this reason, there are many studies concerning the presence of AFM₁ in cheese (Table 2) and numerous studies on aflatoxin in milk and dairy products have been reviewed by some authors (Galvano et al. 1996; Sweeney and Dobson 1998; Creepy 2002).

In the present study, the incidence of AFM₁ was 6.25% in Urfa cheese samples. The results indicate that the incidence of AFM₁ in the Urfa cheese samples were low. None of the AFM₁ amounts were at the risk level for human health because cheese samples did not exceed the Turkish legal limit of 250 ng/kg. These findings indicate that examined samples were manufactured from AFB₁ free milk or low levels of AFB₁ containing milk. Our results were similar to those obtained by Barbieri et al. (1994), who observed 9% of cheese samples, presenting levels of AFM₁ ranging from 35 to 190 ng/kg.

Previous studies have reported different levels of AFM₁ in cheese samples (Table 2). While some researchers have reported high or low levels of AFM₁ in different cheese samples, others have reported the absence of AFM₁ at detectable level in cheese samples. The occurrence of AFM₁ in Urfa cheese is lower than the AFM₁ incidence in different types of cheese reported by Sarimehmetoglu et al. (2004), Tekinsen and Tekinsen (2005), Kamhar (2005) and Baskaya et al. (2006). These authors detected higher percentiles in samples contaminated with AFM₁, ranging from 76.36% to 93.66% of the samples analysed. On the other hand, the levels of AFM₁ observed by Sarimehmetoglu et al. (2004), Tekinsen and Tekinsen (2005), Yaroglu et al. (2005), Kamhar (2005) and Baskaya et al. (2006) in different cheese samples were higher than values observed in the present study, ranging from 50 to 4100 ng/kg. The present results are not in agreement with those obtained by Kivanc (1990), Taguchi et al. (1995) and Kaniou-Grigoriadou et al. (2005), who did not detected AFM₁ in cheese samples. These differences may be due to not only the use of different analytical methods and the variety of cheese, but also the geographic region where cheese is produced and the possible presence of aflatoxin B in the feed (Pittet 1998). In addition, The AFM₁ level in the milk was significantly affected by the geographical region,
the country and the season (Galvano et al. 1996). In summary, the levels found in this survey indicate that the natural occurrence of AFM\textsubscript{1} in Urfa cheese does not represent a significant health risk for the consumer.

<table>
<thead>
<tr>
<th>References</th>
<th>Country</th>
<th>Cheese variety</th>
<th>No of samples</th>
<th>Positive (%)*</th>
<th>Range (ng/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kivanc (1990)</td>
<td>Turkey</td>
<td>White brine</td>
<td>25</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Van otlu</td>
<td>25</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Barbieri et al. (1994)</td>
<td>Italy</td>
<td>Cheese</td>
<td>200</td>
<td>9</td>
<td>35–190</td>
</tr>
<tr>
<td>Taguchi et al. (1995)</td>
<td>Japan</td>
<td>Cheese</td>
<td>41</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sarimehmetoglu et al. (2004)</td>
<td>Turkey</td>
<td>White brine</td>
<td>100</td>
<td>81.75</td>
<td>51->800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kashar</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tulum</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processed</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tekinsen and Tekinsen (2005)</td>
<td>Turkey</td>
<td>Van otlu</td>
<td>60</td>
<td>76.36</td>
<td>100-726</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White brine</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaroglu et al. (2005)</td>
<td>Turkey</td>
<td>White brine</td>
<td>200</td>
<td>5</td>
<td>100-800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kashar</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cream</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaniou-Grigoriadou et al. (2005)</td>
<td>Greece</td>
<td>Feta cheese</td>
<td>54</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Kamhar (2005)</td>
<td>Iran</td>
<td>Feta cheese</td>
<td>80</td>
<td>82.5</td>
<td>150-2410</td>
</tr>
<tr>
<td>Baskaya et al. (2006)</td>
<td>Turkey</td>
<td>White brine</td>
<td>131</td>
<td>93.66</td>
<td>50-4100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processed</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kashar</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: indicates percentage of total samples
ND: Not determined

In conclusion, the data of present study revealed that AFM\textsubscript{1} is not common contaminant of Urfa cheese and AFM\textsubscript{1} levels have not been constituted a human health risk. However, because AFM\textsubscript{1} is considered a potent hepatocarcinogen, further studies are necessary to evaluate the risk to human health due to the ingestion of this toxin in milk and dairy products. Also, more samples should be analysed and surveillance programs must be continuous and widespread in feeds and foods.

References

Yaroglu T, Oruc HH, Tayar M. 2005. Aflatoxin M1 levels in cheese samples from some provinces of Turkey. Food Control 16: 883-885.